"Jika Engkau Tidak Sanggup Menahan Lelahnya Belajar, Engkau Harus Menanggung Pahitnya Kebodohan", Pythagoras

Senin, 06 April 2020

MATRIKS


Kegiatan Belajar 1 : Macam-macam Matriks
A. Pengertian Matriks
1. Pengertian dan Notasi Matriks
Matriks adalah susunan bilangan-bilangan yang diatur dalam baris dan kolom berebentuk persegi panjang. Susunan bilangan-bilangan itu  dibatasi oleh kurva biasa “(  )” atau kurung siku “[  ]”
Contoh :






        Suatu matriks biasanya dinotasikan dengan huruf besar dan ditulis secara umum sebagai berikut:
Amxn artinya matriks A mempunyai baris sebanyak m dan mempunyai kolom sebanyak n. Setiap bilangan yang terdapat pada baris dan kolom dinamakan anggota atau elemen matriks dan diberi nama sesuai dengan nama baris dan nama kolom serta dinotasikan dengan huruf kecil sesuai dengan nama matriknya.
a11 = elemen baris pertama kolom pertama.
a12 = elemen baris pertama kolom kedua.
a1n = elemen baris pertama kolom ke-n.
a21 = elemen baris kedua kolom pertama.
a22 = elemen baris kedua kolom kedua.
a2n = elemen baris kedua kolom ke-n.
am1 = elemen baris ke-m kolom pertama.
am2 = elemen baris ke-m kolom kedua.
amn = elemen baris ke-m kolom ke-n.

Contoh:








6 = elemen baris ketiga kolom kedua.
5 = elemen baris kedua kolom kedua.
9 = elemen baris kedua kolom ketiga.
10 = elemen baris ketiga kolom ketiga.
dan seterusnya.

 2. Ordo Matriks
Ordo suatu matriks adalah banyakna elemen-elemen suatu matriks atau perkalian antara baris dan kolom.
Contoh:












     B. Macam-Macam Matriks
1. Matriks nol.
    Matriks nol adalah matriks yang semua elemennya nol, dilambangkan dengan “O”.
    Contoh:
    
2. Matriks bujur sangkar (persegi).
Matriks bujur sangkar (persegi) adalah matriks yang jumlah baris dan kolomnya sama.
Contoh:
3. Matriks baris.
Matriks baris adalah matriks yang hanya terdiri atas satu baris.
Contoh:
  A = ( 2  5 )                              B = ( 1  2  3  5 )

4. Matriks kolom.
Matriks kolom adalah matriks yang hanya terdiri atas satu kolom.
Contoh:
5. Matriks diagonal.
Matriks diagonal adalah matriks persegi yang semua elemennya nol, kecuali pada diagonal utamanya ada yang tidak nol.
Contoh:
6. Matriks identitas.
Matriks identitas adalah matriks diagonal yang semua elemen pada diagonal utamanya bernilai satu, dilambangkan dengan “I” .
Contoh:

C. Kesamaan Matriks

Dua buah matriks dikatakan sama jika kedua matriks itu berordo sama dan elemen-elemen yang seletak besarnya sama.
Contoh:



















D. Transpos Matriks

Jika pada matriks A setiap baris ditempatkan pada setiap kolom maka matriks itu merupakan matriks transpos. Jika diketahui matriks A berordo mxn maka matriks transpos dari A dilambangkan dengan At yang berordo nxm.
Contoh:





Lembar Kerja Peserta Didik  Klik ! mulai mengerjakan



Tidak ada komentar:

Posting Komentar